Big data en pratique avec Spark

Apprenez travailler avec Spark, le framework ideal pour l'analyse de données dans le cloud, pendent ce training ABIS de deux journées!

Tout le monde semble être actif avec AI, Data Science et "big data" aujourd'hui. Vous voulez sans doute aussi interroger vos sources volumineuses de données (click streams, social media, données relationnelles, données dans le "cloud", données capteurs, ...) et vous rencontrez des limitations avec les data-tools classiques. Dans ce cas, vous avez peut-être besoin de la puissance d'un cluster --et ses capacités de traitement en parallèle-- pour interroger vos dépôts de données distribuées.

Dans le cas où "fast prototyping" et la vitesse de traitement sont prioritaires, vous tombez sûrement sur Spark. Apache Spark est une plate-forme open source qui se concentre surtout sur la vitesse, la facilité d'utilisation, la flexibilité et les algorithmes analytiques. Spark est une alternative pour l'approche MapReduce de Hadoop avec Hive (cf notre cours Big data en pratique avec Hadoop). Spark a complimenté, même remplacé Hadoop, à cause d'un plus haut niveau d''abstraction des API de Spark et sa possibilité de traitement au mémoire qui accélère les procès.

spark-logo.png

Plus spécifiquement, Spark nous laisse interroger facilement les sources de données sur HDFS, dans une base de données NoSQL (p.ex. Cassandra ou HBase), dans une base de données relationnelle, dans le "cloud" (p.ex. AWS S3) ou dans des fichiers locals. A part de ceci, une activité Spark peut facilement être lancée sur soit la machine locale (donc en mode de développement), soit sur un cluster Hadoop (avec Yarn), soit sur une environnement Mesos, ou Kubernetes, ou dans le cloud. Et tout ça à travers un petit script Spark ou bien une programme (Java ou Python) un peu plus complexe, ou bien à travers une interface web (p.ex. Zeppelin ou Databricks).

Ce cours se fonde sur les sujets traités dans L''architecture et l''infrastructure Big Data.

  • On se mettra au travail (sur Linux) avec Spark et ses bibliothèques.
  • Vous apprenez comment implĂ©menter une analyse robuste des donnĂ©es (en utilisant Python, Scala, ou R) avec un interface de style SQL.
  • Ă€ la fin de ce cours, vous aurez acquis suffisamment d'expertise de base pour configurer un environnement de dĂ©veloppement Spark ou Databricks, et l''utiliser pour interroger vos donnĂ©es.
  • Vous serez aussi capable d''Ă©crire des programmes simples sur Spark (en utilisant soit PySpark qui utilise Python, ou bien en utilisant Scala avec Spark-shell), basĂ©es sur des Data Frames et des RDD, optionnellement utilisant les bibliothèques MLlib, GraphX et Streaming.

Planifier une session?

Formation interactive en temps réel – disponible en personne ou en ligne ou dans un format hybride. La formation peut être effectuée en français, en anglais ou en néerlandais.

DEMANDER FORMATION EN ENTREPRISE

 

Calendrier publique des formations
dateduréelang.lieuprix 
15 oct2web based 1310 EUR (excl. TVA)
15 oct2Leuven 1310 EUR (excl. TVA)
INFO SESSION ET INSCRIPTION

Participants

Ce cours concerne toute personne qui veut commencer à utiliser Spark: développeurs, architectes de données, et tous ceux qui devront travailler avec la technologie data science.

Connaissances préalables

Être familier avec les concepts des data clusters et le traitement distribué des données; voir notre cours L'architecture et l'infrastructure Big Data. Additionnellement, la connaissance minimale d'SQL et de Linux est un avantage. En tout cas, une expérience minimale d'une langue de programmation (p.ex. Java, Python, Scala, Perl, JavaScript, PHP, C++, C#, ...) est nécessaire.

Contenu

  • Motivation pour Spark & concepts de base
    • Le projet Apache Spark et ses composants
    • Spark et Databricks
    • Apprendre l''architecture de Spark et son modèle de programmation
    • Les principes de l''analyse de donnĂ©es
  • Sources de donnĂ©es
    • Interroger des donnĂ©es qui se trouvent sur Hadoop HDFS, Cassandra, AWS S3, ou une base de donnĂ©es relationnelle
  • Interfaces
    • Travailler avec une des interfaces de programmation (plus spĂ©cifiquement: avec Spark-shell et avec PySpark)
    • Écrire et dĂ©boguer des programmes qui rĂ©solvent des problèmes simples d''analyse de donnĂ©es
  • Data Frame et RDD
  • Introduction brève aux bibliothèques Spark
    • SparkSQL
    • Machine Learning (MLlib)
    • Streaming (c.Ă .d., procĂ©der des donnĂ©es "volatiles")
    • Computations en parallèle dans des arborescences et des graphes (GraphX)

Pédagogie

Enseignement classique agrémenté d'exemples pratiques, et assez de temps prévu pour pratiquer avec plusieurs exercices

Certificat

À la fin du cours, le participant reçoit un «Certificat de réussite».

Durée

2 jours.

Formateur


INFO SESSION ET INSCRIPTION