
• •

1 ABIS Training & Consulting

G
eert V

andevenne - A
bis T

raining &
 C

onsulting

 Geert Vandevenne - Abis Training & Consulting

O/R mapping with Hibernate

O
/R

 m
apping w

ith H
ibernate

Geert Vandevenne - Abis Training & Consulting2

Classes and objects

OO-applications are composed of objects which

• consist of data and behaviour

• are connected to each other

• send messages to each other

a1:Account

:Person

xfer(m:Money, a2)

1: check()

a2:Account

2 [OK]: minus(m)

3: plus(m)

O
/R

 m
apping w

ith H
ibernate

Geert Vandevenne - Abis Training & Consulting3

Classes and objects

• objects are described in classes

• classes are instantiated at runtime and populated with data

• these data must be preserved i.e. persisted

O
/R

 m
apping w

ith H
ibernate

Geert Vandevenne - Abis Training & Consulting4

Features of persistence mechanisms

• persist the information (data) in the object model, i.e.

- the data in the objects described as attributes in the class model

- links between objects described as relationships in the classes
model

• synchronization between application and data

- data in memory must be synchronized with data in data store

- data in data store must be synchronized with data in memory

- important if different applications access the same data

• transactions

- set of actions that move data from one consistent state to another

- key features: Atomicity, Consistency, Isolation, Durability

• concurrency control

- different users/applications must reach the same data at the
same time...

- ...while keeping the data in a consistent state

O
/R

 m
apping w

ith H
ibernate

Geert Vandevenne - Abis Training & Consulting5

Features of persistence mechanisms (cont.)

• query mechanism

- need for some mechanism to retrieve data selective from the data
store

• identity support

- avoid multiple copies of the same data

• security

- unauthorized people must not see sensitive data

Standard mechanisms in java to persist these objects:

• serialization

• JDBC

O
/R

 m
apping w

ith H
ibernate

Geert Vandevenne - Abis Training & Consulting6

Serialization

Standard component in each JVM

• lightweight persistence mechanism

• classes implement interface Serializable or Externalizable

• persist with writeObject(Object) of ObjectOutputStream

Features

• uses the class-model as data model

• serialization of complete object graph to e.g. file

• use of keyword transient

O
/R

 m
apping w

ith H
ibernate

Geert Vandevenne - Abis Training & Consulting7

Serialization

Drawbacks

• no transaction management or concurrency control

• no queries possible against data

• granularity is entire object graph

• no identity support or coordinated management of instances in
storage

-> multiple copies of same instances can exist and manipulated

• no automatic synchronization between application and data

• not scalable

Conclusion:

-> not suitable to store large quantities of data

O
/R

 m
apping w

ith H
ibernate

Geert Vandevenne - Abis Training & Consulting8

Java DataBase Connection (JDBC)

Standardized framework to interact with Relational Database Manage-
ment Systems (RDBMS)

• classes and interfaces in packages java.sql and javax.sql

• implementations provided by RDBMS vendors

Features

• uses data model of relational system:

- data reside in set of tables

• query database with Structured Query Language (SQL)

• makes use of features of the RDBMS regarding:

- transaction management and concurrency control

- identity support through primary keys (PK)

- security

O
/R

 m
apping w

ith H
ibernate

Geert Vandevenne - Abis Training & Consulting9

Java DataBase Connection (JDBC)

Drawbacks

• Existence of many SQL dialects

• developers must understand very well the relational model

• procedural approach of database

• No support for object model!!!

You have to make a choice in your application:

• consider entities as rows in database

-> loose of object capabilities of java

• consider entities as objects

-> must be mapped to relational structure

O
/R

 m
apping w

ith H
ibernate

Geert Vandevenne - Abis Training & Consulting10

Java DataBase Connection (JDBC)

Conclusion:

• supports a lot of interesting features

• widely supported

• mismatch between object model and relational model

-> need for mapping (called O/R mapping)

O
/R

 m
apping w

ith H
ibernate

Geert Vandevenne - Abis Training & Consulting11

Object - relational mapping

Data mapping involves a lot of problems:

• mapping of inheritance trees

- inheritance is not supported in RDBMSs

• difference in identification of entities

- in OO: not directly supported

- in RDBMS: through primary keys (PK)

• difference in relationship management between entities:

- in OO: links between objects

- in RDBMS: PK - FK relations

O
/R

 m
apping w

ith H
ibernate

Geert Vandevenne - Abis Training & Consulting12

Object - relational mapping

Miscellaneous concerns:

• transaction management

-> in application (application environment) or by datastore?

• synchronization

-> how to keep the data in the objects in sync with the database an
vice versa

O/R mapping solutions:

• do it yourself: extremely difficult and cost intensive

• use existing solutions: Hibernate, JDO, Toplink, EJB,...

O
/R

 m
apping w

ith H
ibernate

Geert Vandevenne - Abis Training & Consulting13

Important considerations

Domain logic

organization determines the way of mapping

Architectural aspects

prescribe how the domain logic talks to the database

Structural aspects

describe the actual mapping of an OO model to a relational database

Behavioural aspects

explain how objects are loaded from and saved into the database

O
/R

 m
apping w

ith H
ibernate

Geert Vandevenne - Abis Training & Consulting14

Organization of domain logic

Different ways to organise domain logic (Martin Fowler):

• Transaction Script

- organisation of domain logic around transactions

- procedural - not object oriented

- suitable for simple CRUD applications

• Table Module

- organisation of domain logic around database tables

- organisation of procedures in objects

- suitable for manipulating result sets of data

• Domain Model

- organisation of domain logic around business objects

- fully object oriented

- suitable for applications with complex business logic

- Hibernate can be used in case a real Domain Model is used

O
/R

 m
apping w

ith H
ibernate

Geert Vandevenne - Abis Training & Consulting15

Architectural considerations

Domain logic and Data Access logic should be separated in different
layers

Several possibilities:

• DataMapper pattern

• Data Access Object design pattern

O
/R

 m
apping w

ith H
ibernate

Geert Vandevenne - Abis Training & Consulting16

Hibernate Architecture

Business Layer

Persistent
Classes

Session Transaction Query

SessionFactory

Configuration

UserType

Interceptor

Data Access Layer

DAO classes

Persistence Layer

O
/R

 m
apping w

ith H
ibernate

Geert Vandevenne - Abis Training & Consulting17

Structural aspects - domain model

name

getPersons()

Company
phone

Job

name
phone

Person

1

*

* 1

nrOfEnrollees
invoiceStatus

Enrollment

1
enrollee
company

**

1
contact

*

*

0..1 enrollee
0..1invoice p.

Address

getPersons()

Group

phone

getPersons()

Office

1

0..1 privé

1

*

1

1
invoice
address

*

Session 1

*

1

{xor}

invoice address

*

*

()

vATnr
invoiceName

Juridical
Identity

1 0..1

O
/R

 m
apping w

ith H
ibernate

Geert Vandevenne - Abis Training & Consulting18

Structural aspects - database model

sno
sdate

Sessions

s_cid

cid
cstitle

Courses

cltitle
cdur

e_sno
eno

Enrolments

e_pno

pno
pfname

Persons

plname

cono
coname

Companies

costreet
costrno
cotown
cotownno
cocountr
cotel
covat
cobankno
coc_pno
cotype
co_gr_cono
co_vat_cono

pfunc
ptel
psex
pcono

caprice
sins_pno
s_loc_cono
s_org_cono
scancel
sincomes
skind
s_sno

einv_pno
epay
e_cono
ecancel
einv_cono

O
/R

 m
apping w

ith H
ibernate

Geert Vandevenne - Abis Training & Consulting19

Persistent classes

Some classes of the Domain Model are persistent

Hibernate is a TRANSPARENT persistency framework

• take care of bi-directional associations yourself

Hibernate works with POJOs (Plain Old Java Objects)

• Serializable interface not needed

• no-argument constructor obligatory (package friendly or higher vis-
ibility)

• accessor methods (can be private)

O
/R

 m
apping w

ith H
ibernate

Geert Vandevenne - Abis Training & Consulting20

Persistent classes

Hibernate maps domain model and database schema with XML map-
ping files

What must be mapped:

• properties

• associations

• hierarchies

O
/R

 m
apping w

ith H
ibernate

Geert Vandevenne - Abis Training & Consulting21

Persistent classes - property mapping

• conversion of java types to sql types

- rich set of Hibernate built-in types

- e.g. string, integer, double, date, time, clob,...

• a domain model contains often value types

- result of fine-grained object model

- value types do not have a (database) identity

- e.g. VATnumber, PhoneNumber, Euro,...

-> Possibility to create your own user types

O
/R

 m
apping w

ith H
ibernate

Geert Vandevenne - Abis Training & Consulting22

Association mapping

• multiplicity of association

• directionality of association

- uni- or bidirectional

- must be implemented in java-code

- no managed associations in Hibernate

- relations in RDBMS always bidirectional

• pk - fk relationship in RDBMS

listOfSessions :
Set

Course

course : Course

Session1 *

sno
sdate

Sessions

s_cid

cid
cstitle

Courses

cltitle
cdur
caprice

sins_pno

O
/R

 m
apping w

ith H
ibernate

Geert Vandevenne - Abis Training & Consulting23

Association Mapping

Hibernate supports:

• one-to-one, many-to-one and many-to-many associations

• from a java-perspective it supports mapping of sets, bags, lists and
maps

• polymorphic associations

• (polymorphic queries)

O
/R

 m
apping w

ith H
ibernate

Geert Vandevenne - Abis Training & Consulting24

Value types

Difference between

• entity type: has its own database identity (see further)

• value type: depends on database identity of entity type

firstName
lastName
function

Person

street
city
zipCode

Address
11

pno
fname
lname

Persons

function

OO

RDBMS

street
city
zipCode

O
/R

 m
apping w

ith H
ibernate

Geert Vandevenne - Abis Training & Consulting25

Hierarchy mapping

Hierarchical relations between entities not supported in database

Three alternatives:

• table per concrete class (concrete table inheritance)

• table per class hierarchy (single table inheritance)

• table per subclass (class table inheritance)

id <<pk>>
title
duration

Course

domain

CourseGroup

dailyPrice

ConcreteCourse

O
/R

 m
apping w

ith H
ibernate

Geert Vandevenne - Abis Training & Consulting26

Table per concrete class

• No special mapping needed

• Create one mapping per class

• used when super class is abstract

• entity integrity can not be enforced by the database

• each change to super class -> change of all subclass tables

id <<pk>>
title
duration

coursegroups

domain

id <<pk>>
title

concretecourses

duration
dprice

O
/R

 m
apping w

ith H
ibernate

Geert Vandevenne - Abis Training & Consulting27

Table per class hierarchy

• used with few subclasses with few attributes

• gives a lot of null values in table

• violates normalisation rules

• easy refactoring

• discriminator

id <<pk>>
title
duration

courses

domain
dprice
ctype <<discriminator>>

O
/R

 m
apping w

ith H
ibernate

Geert Vandevenne - Abis Training & Consulting28

Table per subclass

• create pk-fk relationships in database

• lots of joins to compose object

• SQL can not enforce consistency of model

coursegroups

domain

concretecourses

dprice

id <<pk>>
title
duration

courses

grID <<pk>><<fk>> ccID <<pk>><<fk>>

O
/R

 m
apping w

ith H
ibernate

Geert Vandevenne - Abis Training & Consulting29

Hierarchy mapping - general remarks

You can not mix strategies within one hierarchy

You can mix strategies in your application

Choose a hierarchy mapping strategy

• No polymorphic queries or associations needed
-> table-per-class strategy

• Polymorphic queries or associations needed

- not to many subclasses and not to many attributes in subclasses
-> table-per-class-hierarchy

- many subclasses or many attributes in subclasses
-> table-per-subclass

O
/R

 m
apping w

ith H
ibernate

Geert Vandevenne - Abis Training & Consulting30

Persistent classes - example

<hibernate-mapping package ="be.abis.model" schema ="vj" >
<class name="Course" table ="COURSES" >

<id name="course_id" column ="cid" type ="long" >
<generator class ="identity" />

</id>

<property name="title" column ="stitle" type ="string" not-null ="true" />
<property name="price" column ="price" type ="be.abis.model.Euro" />

<discriminator column ="cotype" type ="string" />

<set name="abisSessions" inverse ="true" >
<key column ="s_cid" />
<one-to-many class ="AbisSession" />

</set>

<subclass name="CourseGroup" discriminator-value ="of" lazy="true" >
<property name="domain" column ="codom" />

</subclass >
</class >

</hibernate-mapping >

O
/R

 m
apping w

ith H
ibernate

Geert Vandevenne - Abis Training & Consulting31

Object identity

Distinction between

• object identity: a == b

• object equality: a.equals(b)

• database equality: same primary key(pk) in database
a.getId().equals(b.getId())

Distinction between

• natural keys

• synthetic keys

Criteria to choose a primary key

• not null

• unique

• value never changes

O
/R

 m
apping w

ith H
ibernate

Geert Vandevenne - Abis Training & Consulting32

Object identity - mapping

Several possibilities:

• Let database manage identity

• Let Hibernate manage identity

- difficult if more applications run on same database

• Manage the identity in application

- difficult if more applications run on same database

O
/R

 m
apping w

ith H
ibernate

Geert Vandevenne - Abis Training & Consulting33

Behavioural aspects

• what is the lifecycle of persistent objects

• who is responsible for retrieving and storing objects

• how are transactions defined

• what about caching of objects

• what about lazy loading of objects

• how can we get information out of the database

O
/R

 m
apping w

ith H
ibernate

Geert Vandevenne - Abis Training & Consulting34

Persistence lifecycle

transientH

H
persistent

detached

session.save(this)
session.saveOrUpdate(this)

session.evict(this)
session.close()
session.clear()

session.udate(this)
session.saveOrUpdate(this)
session.lock(this, lockMode)

session.delete(this)

session.get(class, id)
session.load(class, id)
session.find(query)
session.iterate(query)
...

garbage collection

garbage collection

O
/R

 m
apping w

ith H
ibernate

Geert Vandevenne - Abis Training & Consulting35

Lifecycle states

Transient

• object created with new keyword

• not associated with database

Persistent

• associated with database (persistence manager - Session)

• has database identity (pk)

• transactional - synchronized with db at end of transaction

• Hibernate performs dirty checking

Detached

• when a persistent object is not associated with a session (close)

• can become “persistent” again

Object changes state through interaction with a Session-object

O
/R

 m
apping w

ith H
ibernate

Geert Vandevenne - Abis Training & Consulting36

Persisting and retrieving objects

Three possibilities to select objects:

• Hibernate Query Language (HQL)

• Query By Criteria (QBC)

• Query By Example (QBE)

Other possibilities:

• report queries

- relational in nature

- used to export capabilities of RDBMS

• native sql

- to optimize sql for a specific RDBMS system

O
/R

 m
apping w

ith H
ibernate

Geert Vandevenne - Abis Training & Consulting37

Persisting and retrieving objects

Retrieve objects from the database with HQL

• Hibernate Query Language

• resembles Structured Query Language

• no ddl or dml

Query query = (Course) session.createQuery(“from Course c where c.title = :title”);
query.setString(“title”, “Hibernate”);
List result = query.list();

O
/R

 m
apping w

ith H
ibernate

Geert Vandevenne - Abis Training & Consulting38

Persisting and retrieving objects

Retrieve objects from the database with QBC

• Query By Criteria

• more object-like

• no ddl or dml

Criteria criteria = session.createCriteria(Course.class);
criteria.add (Expressions.like(“title”, “Hibernate”));
List result = criteria.list();

O
/R

 m
apping w

ith H
ibernate

Geert Vandevenne - Abis Training & Consulting39

Persisting and retrieving objects

Retrieve objects from the database with QBE

• Query By Example

• not very powerful

• retrieves objects with matching properties

• no ddl or dml

Course course = new Course();
course.setTitle(“Hibernate”);
Criteria criteria = session.createCriteria(Course.class);
criteria.add (Example.create(course));
List result = criteria.list();

O
/R

 m
apping w

ith H
ibernate

Geert Vandevenne - Abis Training & Consulting40

Transitive persistence

Persistence by reachability

• direction of association is important

• by default Hibernate does navigate associations

• for each association, a cascade style can be specified

:ObjectOrientation

:UML :Java

:JavaProgramming :Hibernate

O
/R

 m
apping w

ith H
ibernate

Geert Vandevenne - Abis Training & Consulting41

Fetching

Different styles of fetching:

• immediate fetching

- linked objects fetched immediate together with parent

• lazy fetching

- linked object fetched when link is navigated

• eager (outer join) fetching

- linked objects fetched immediate together with parent

- select-clause contains outer join-clause

• batch fetching

- not strictly a fetching strategy

- used to improve performance of lazy fetching

O
/R

 m
apping w

ith H
ibernate

Geert Vandevenne - Abis Training & Consulting42

Transactions 1

Unit-Of-Work (unit-of-recovery)

• related activities

- all successful executed

- all failed

• ACID

Hibernate has its own transaction API

Hibernate uses underlying transaction mechanism:

• Java DataBase Connectivity (JDBC) in non-managed environment

• Java Transaction API (JTA) in managed environment

O
/R

 m
apping w

ith H
ibernate

Geert Vandevenne - Abis Training & Consulting43

Transaction isolation 1.1

Isolation levels can be specified for transactions (cfr. JDBC):

• read uncommitted

• read committed

• repeatable read

• serializable

HQL even understands SELECT... FOR UPDATE

O
/R

 m
apping w

ith H
ibernate

Geert Vandevenne - Abis Training & Consulting44

Caching 2

Idea: keep objects (data) close to application

Hibernate has two caching levels

First-level cache

• always available

• accessed through Session object

• objects synchronized with database on flush() or commit()

Second level cache

• process or cluster scope

• different caching strategies:

- specifies isolation of objects in the second level cache

- specifies synchronisation with database

O
/R

 m
apping w

ith H
ibernate

Geert Vandevenne - Abis Training & Consulting45

Hibernate

Thank you

Geert Vandevenne
ABIS Training & Consulting
gvandevenne@abis.be

